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SUMMARY 

A relatively novel formulation of the Navier-Stokes equations is used for obtaining solutions of two 
dimensional incompressible fluid flow and convective heat transfer problems. A vorticity transport equation 
along with two Poisson equations for the velocity components and the energy equation are solved by a finite 
difference scheme. A coupled solution procedure is used for solving simultaneously the dependent variables 
along a line, using a block tridiagonal matrix algorithm. The formulation is found to be stable and has features 
that may be desirable for solving a wide variety of flow and heat transfer problems. 
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INTRODUCTION 

The vast majority of the numerical solutions of incompressible Navier-Stokes equations presented 
in the literature is based on the vorticity-stream function formulation. The vorticity-stream 
function formulation has the major advantages of avoiding the explicit appearance of the pressure 
and not having to solve the continuity equation directly. One of the major reasons for the success of 
the above formulation in predicting incompressible flow fields is that, by definition, the continuity 
equation is satisfied identically for all values of the stream function.’ The stream function, by virtue 
of its definition, is valid for all two-dimensional flows, both rotational and irrotational. For steady 
flow vorticity-stream function formulations, an iteration scheme is usually introduced to handle 
the vorticity boundary condition at a solid surface. This iteration is in addition to the iteration 
required to solve the non-linear vorticity transport equation. In most of the published work to date, 
either point or  line-by-line iteration schemes are employed where a sequential, ‘one variable at a 
time’ procedure is employed.’ 

The vorticity-stream function formulation, however, has serious limitations in calculating 
certain flows, e.g. in flows within multiply connected bodies or  through flow passages, where the 
mass flow rates are not known a p r i ~ r i . ~ , ~  Also the calculation of vorticity at the solid walls requires 
the evaluation of a second-order derivative of the stream function at the wall. Since the early 1970’s, 
there has been a noticeable shift of interest from the vorticity-stream function formulations of the 
Navier-Stokes equations to the primitive variable (u-v-p) formulations. Finite difference 
primitive variable formulations have been used with success by several inve~tigators.’-~ The 
primitive variable formulations for incompressible flows, however, suffer from the limitation that 
there is no obvious equation for obtaining the pressure field and there is no specified boundary 
condition for the pressure at the solid walls. The available methods for solving the primitive 
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variable formulation need considerable programming and storage effort (e.g. the use of staggered 
grids) and under-relaxation of the pressure-correction equation. 

A relatively novel formulation of the Navier-Stokes equations employing the vorticity and 
velocity components for solving viscous incompressible fluid flow and heat transfer problems 
alleviates most of the drawbacks mentioned earlier for the vorticity-stream function and the 
primitive variables formulations. In addition, the vorticity-velocity formulation has easy 
application to higher-order accuracy difference methods and to non-orthogonal coordinate 
systems. The staggered grid used for the primitive variables formulation makes both difficult. 

The vorticity-velocity formulation has been previously used by Fasel and coworkers*-'' for 
hydrodynamic stability problems and by Fusegi and Farouk' for convective heat transfer 
problems. Caretto et a1.l had used a mixed vorticity-velocity and primitive variable formulation 
to predict three-dimensional boundary layer flows. It has, however, been observed that the above 
formulation gives poor results when a sequential, 'one variable at a time' type iteration procedure 
is employed. This is particularly the case for high Reynolds or Rayleigh number flows. When point 
or line-by-line iteration schemes (with a sequential, 'one variable at a time' type approach) are 
employed, then the vorticity boundary conditions at solid walls lags the iteration cycle as the 
velocity values at the near wall nodes have to be obtained from the previous iteration. This 
drawback is eliminated in the coupled solution procedure employed here where the vorticity and 
velocity components (including the boundary values) are solved simultaneously along a given line. 

The vorticity-velocity formulation evaluated in this paper solved by the coupled solution 
procedure has been found to be highly stable for a large range of Reynolds and Rayleigh numbers. 
These types of coupled solution procedures are quite common in aerodynamics, but have rarely 
been used for incompressible viscous flows.13 

TEST PROBLEMS 

In order to study the applicability of the formulation, fluid flow and heat transfer problems in a 
square cavity and horizontal circular annulus are considered as shown in Figures 1 and 2, 
respectively. For the square cavity, an insulated top (moving or stationary) wall is considered and 
the left and right vertical walls are maintained at constant temperatures. The bottom wall is also 
taken to be insulated. For the second geometry, the inner and outer cylinders are considered to be 
maintained at constant temperatures. Both stationary and rotating inner cylinders are considered. 

The two geometries are chosen because a vast amount of results are available in the literature for 
fluid flow and heat transfer characteristics in the above cases (obtained either by the primitive 
variable or vorticity-stream function formulation), with which comparisons could be made with 
the results obtained from the present formulation and solution procedure. 

Governing equations 

The flow and heat transfer phenomena to be investigated here are described by the complete 
Navier-Stokes and energy equations for two-dimensional laminar incompressible flows. The 
viscous dissipation term in the energy equation is neglected and the Boussinesq approximation is 
invoked for the buoyancy induced body force term in the Navier-Stokes equations. 

In the present formulation, the Navier-Stokes equations are expressed in the vorticity transport 
form (for the square cavity problem) 

aco a a a am a am aT 
- - -+- (UO)+-(Z~O)=-  - + - -  - +Gr---, 
at ax aY a x ( a x )  ay(ay)  ax 
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u = v = o  
T =  1 

x.u 

Figure 1. The geometry and the boundary conditions of the driven cavity problem and natural convection in the square 
cavity 

Figure 2. The geometry and the boundary conditions of natural and mixed convection in the annulus between the 
concentric cylinders 
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with the vorticity defined as 

and the continuity equation is given as 

where the coordinate system is defined in Figure 1 for the Cartesian coordinates. 
The two Poisson equations for the velocity components are given as 

a z U  8% a o  
3x2 ay2 ay 

+--= _-  

and 
a2v  a 2 0  am 

a x 2  ay2 ax '  
--+ 

The energy equation is similar to the vorticity transport equation and can be expressed as 

(4) 

( 5 )  

The two Poisson equations can be derived from the definition of vorticity, by differentiation with 
respect to y and x, respectively, and by making use of the continuity condition. Equations (1) along 
with equations (4)-(6) represent the governing equations in the vorticity--velocity formulation to 
study the incompressible viscous flow problems, For a given problem the above coupled equations 
system needs to be solved along with appropriate boundary conditions. The vorticity boundary 
conditions at the walls introduce additional coupling to the system. 

The dependent variables above are given in non-dimensional forms and the variables are defined 
as follows: 

U*L v*L x=- x* Y = -  Y* u=-9 v=--, 
L '  L' V V 

T* - T, t"v 
V TH - T, L2 

, T=-- and t=-, 
O*L2 

0 =: -~ 

where L is the characteristic length of the cavity and TH and T, are the right and left vertical wall 
temperatures, respectively. 

For the concentric annulus problem the vorticity transport equation is given as 

am a 
r-- +-(rum) + 

at 8r ae 

+ G r  

with the vorticity defined as 

(7) 
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and the continuity equation is given as 

a a0 

dr  ae D = -(ru) + - = 0, 

where the coordinate system is defined in Figure 2. 
The two Poisson equations in the cylindrical coordinate now become 

z( rg) +:(:;) = --%- aw zz--; au 
ar ar 

and 

The energy equation can be expressed as 

aT a d a (  1 a T )  a (  1 18,) 
r-+-(ruT)+-(vT)=- --I- +- . 

at ar a% ar Pr ar a6 P r r a e  

1021 

The dependent variables were non-dimensionalized as follows: 

r* u*L v*L 
r = -  , v = - ,  

L’ V V 

O*L2 T* - Tc t*v 
and t = -  

L2 ’ (jJ=------- , T=- 
V TH - Tc 

where L is the gap width of the annulus and TH and Tc are the inner and outer cylinder wall 
temperatures, respectively. 

For the problem geometry as shown in Figure 1, the following boundary conditions are used: 

a0  

ax’ 

av 
ax7 

u=O,  v = O ,  a=- T=O a tx=O,  O < y < l ,  

u = o ,  v = o ,  m = -  T = l  a t x = l ,  O < y < l ,  

and 

where the Reynolds number is given as Re = UL/v, U being the velocity of the moving wall. 

specified: 
For the problem geometry as shown in Figure 2, the following boundary conditions are 

( v), T =  1 at r =ri ,  O d % d 2 n ,  u=O,  v = R e ,  a= - - r  
l a  
r ar 

i a  
u=O, v = O ,  w=--(rv),  T=O at r = r o ,  OdOd2z, 

r d r  
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max 

where the rotational Reynolds number is given as Re = rfQL/v,  Q being the rotational speed of the 
inner cylinder. 

(6: - 6:- < (k  = 1,2,. . ., m), 

SOLUTION METHOD 

A coupled solution method (along a line) is presented here for solving the system of coupled 
differential equations via a block tridiagonal matrix algorithm. The set of governing equations is 
discretized by a control-volume-based finite difference method. The convective terms are 
approximated by a hybrid14 differencing scheme and a fully implicit transient scheme is employed. 
It is seen that the vorticity and velocity equations are coupled and there is an additional coupling 
through the wall boundary conditions. However, the energy equation is coupled to the vorticity 
and velocity equations by the source term in the vorticity equation and the convection terms in the 
energy equation itself. The finite difference approximations to this set of flow equations must be 
solved iteratively. This is usually accomplished by the linearization process of employing the 
results of previous iteration in calculating the coefficients of the non-linear convective and source 
terms. In the present application of interest in the vorticity-velocity formulation, the difference 
equations are solved directly for a given line of grid points at constant x or constint r. The 
discretized system can be thought of as an ensemble of several tridiagonal subsystems coupled 
through diagonal submatrices. The system has the form 

m 

k =  1 
k P 1  

af,j4f,j-, +bf,j4f,j+cf,j#t,j+l + C (d,j4f,j-I +bf,j4f, j+cf, j~~,j+l)=ef, j+ff, jrPbi, j ,  (12) 

where the indices i and j  represent spatial location and Cp0 denotes the values of 4 at the previous 
time level. The above equation is written for each dependent variable @' ( k  = 1,2,. . . m). The 
vorticity boundary conditions along the walls at constant x or r can also be cast into the above 
form. Second-order accurate finite difference expressions were used for the vorticity boundary 
conditions at the wall. The resulting equation system forms a block tridiagonal system. It is to be 
noted that along the given line all values of 4 are considered at the same iteration level. The 
solution of the whole domain is obtained by sweeping along the y or 6 directions. To accelerate 
convergence, the discretized equations can also be written along a given line of grid points at 
constant y or constant 6 and the sweep directions are reversed. The reversing of sweep directions is 
especially important for the square cavity problem where walls are present along both constant x 
and constant y lines. 

The iteration is terminated when values of the dependent variables at each grid point satisfy the 
following convergence criterion: 

where %k stands for any dependent variable and n the iteration level. The computations were 
carried out on a PRIME 850 computer. The approximate number of iterations required for 
convergence at each time level varies from 100 to 500, depending on the values of the Reynolds and 
Rayleigh numbers of the problem as well as on the number of grid points. Typical CPU times 
varied from thirty minutes to three hours. 

RESULTS AND DISCUSSION 

Results were obtained for forced and free convection problems in a square cavity and for free and 
mixed convection problems in the cylindrical annulus, using the vorticity-velocity formulation. 
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These results demonstrate the applicability of the vorticity-velocity formulation, which up to now 
has been ignored by the majority of investigators in convective heat transfer. The mixed convective 
problems considered in the cylindrical annulus are significant, as the problem is difficult to analyse 
in the vorticity-stream function formulation, due to the unknown mass flow rate through the 
cylindrical annulus. 

Forced convection problems were solved first for the square cavity by setting Gr = 0 in the 
formulation, which decouples the energy equation from the vorticity transport and velocity 
equations. The driving force of the fluid motion is the sliding top in this case. This, so-called 'driven 
cavity', problem has been widely used by investigators to evaluate numerical schemes in the 
p a ~ t . ' ~ , ' ~  Curiously, though the hydrodynamic problem has been solved by many researchers, no 
heat transfer results for the forced convection case could be found in the literature. Nusselt 
numbers for a similar problem have been reported by Chen et but different temperature 
boundary conditions were used in that case. Thus, for the forced convection problem, only flow 
characteristics obtained with the present formulation could be compared with previous studies. 

For the forced convection, in the square cavity, results were obtained for the Reynolds number 
ranging from 10" to lo3. Constant fluid properties with Pr = 0.721 were used for all cases. A 51 x 51 
uniform mesh was employed for the lower Reynolds number cases whereas a 51 x 5 1 non-uniform 
mesh was considered for the higher Reynolds numbers. The results obtained for lower Reynolds 

Present method 

-04 - 

-06 - 

u/Re 

Figure 3. Profiles of u and lj along the cavity vertical and horizontal mid-planes (x = 0.5 and y = 0.5, respectively) for 
different moving lid velocities (Re) (Ra = 0) 
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number cases were used as the initial data of the computation for higher Reynolds number cases. 
No under-relaxation factor is used for the forced convection studies. 

Figure 3 shows theuvelocitydistributionsat thecavityverticalmid-plane(x = 0-5)and vprofilesat 
the horizontal mid-plane (y = 05)  for Re = 400 and 1000. For lower Reynolds numbers (not shown 
here) the predictions had excellent agreement with previous studies.'* The u and v profiles at the 
vertical and horizontal mid-planes, respectively, at Re = 400 are compared with the solutions given 
by Olson16 in Figure 3. Very good agreements are obtained in this case. No numerical instabilities 
were observed in the solution procedure. 

Figure 4 gives the streamlines ($/Re) computed from the velocity field at Re = 1000. The results 
are in good qualitative agreement with the predictions given by de Vahl Davis and Mal l in~on. '~  
The temperature results in this case could not be compared with previous studies owing to the lack 
of the same geometry with similar temperature boundary conditions in the literature. It was, 
however, observed that a very large temperature gradient occurs near the hot wall as the Reynolds 
number increases. The local Nusselt number at the hot vertical wall remains fairly uniform for most 
of the length and then increases rapidly as the moving lid is approached. The cold wall 
characteristics are different and the Nusselt number peaks only at  the middle in this case. 

Free convection results in the cavity are presented next, obtained by the vorticity-velocity 
formulation. The top wall was considered to be stationary and the fluid motion is caused solely by 
the buoyancy effects. The Rayleigh number was varied from 10' to 106 and a constant Prandtl 
number of 0.721 was used. A 31 x 31 mesh was used for the lower Rayleigh numbers and it was 

u = R e  
_____j_ 

X 

Figure 4. Stream function ($/Re)  contours at Re = lo00 (A($/&) = 0.0142) (Ra = 0) 
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gradually increased to a 65 x 65 mesh for the highest Rayleigh number studied. For the higher 
Rayleigh number cases, a non-uniform mesh was employed owing to the formation of boundary 
layers. 

The natural convection results were compared with a recent bench mark numerical solution of 
the same problem by de Vahl Davis.’O In general, the agreements of the present solution obtained 
by the vorticity-velocity formulation with those given in Reference 20 are excellent. 

The u and v profiles at the vertical and horizontal mid-sections are shown in Figure 5 for 
Ra = lo4. The profilesaresymmetricand thelocationandmagnitudeofthemaximumvaluesofuand 
v as given in Reference 20 are also shown in Figure 5. The agreement appears to be very good. With 
higher Rayleigh numbers, the velocity peaks move closer to the walls, indicating formation of 
boundary layers. 

The isotherms are presented for Ra = lo4, lo5 and lo6 in Figures 6,7 and 8, respectively. In all 
cases shown the isotherms are found to undergo an inversion at the central region of the cavity. The 
formation of the thermal boundary layers along the cold and hot walls is clearly observed as Ra 
increases. At Ra = lo6, the fluid is thermally stratified except for the thermal boundary layer 
regions near the vertical walls. The present prediction show good qualitative agreement with the 
solution in Reference 20. 

The local Nusselt number distribution at the cold and hot walls for various Rayleigh numbers is 
shown in Figure 9. 

3c 

20 

> 

1c 

0 

- 10 

-20 

- 30. 

U 

Figure 5. Profiles of u and u along the cavity vertical and horizontal mid-planes (x = 0.5 and y = 0.5, respectively) with 
Ra = lo4 
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Figure 6. Isotherms (7') at Ra = lo4 {AT = 0.1) (natural convection) 

X 

Figure 7. Isotherms (7') at Ra = lo5 (AT = 01) (natural convection) 
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X 

Figure 8. Isotherms (T )  at Ra = lo6 (AT = 0.1) (natural convection) 

0.2 0 4  06 0.8 10 
Y 

Figure 9. Distribution of the local Nusselt number (Nu(y))  along the cavity cold and hot walls (x = 0  and x = 1, 
respectively) for various Ra (natural convection) 
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Figure 10. Change in the average Nusselt number ( N u )  with Ra (natural convection) 

The location and magnitude of the maximum Nusselt numbers at different Rayleigh numbers as 
given in Reference 20 are also shown in the figure. The solutions given by Jones" at Ra = lo4 and 
lo6 are also compared with the present solutions and the agreement is found to be good. 

The mean Nusselt number predictions are compared with those given in Reference 20 in Figure 
10. The predictions almost overlapped with the solution given in Reference 20. No solutions above 
Ra = lo6 were attempted as the flow may no longer be laminar and stable in those cases. 

Natural convection in the annulus between the concentric cylinders is investigated next. The 
geometry of the problem is shown in Figure 2. The ratio of the gap width, L, to the inner cylinder 
diameter, 2ri, is held fixed at 0.8. The stationary inner cylinder is considered first. The direction of 
the gravitational force is taken as 6 = 0". Values of 6' increase counterclockwise from that direction. 
The Rayleigh number defined with the gap width, L, and the temperature difference of the cylinder 
surface, T,-T,, was varied from 10' to lo5. Beyond the maximum Ra studied, the flow is thought 
to become turbulent.22 The Prandtl number was set at a constant value, 0.721. The entire domain 
of the annulus was solved without considering symmetry planes for obtaining greater numerical 
accuracy. The number of grid points used for the computation was 41 in the r direction and 72 in 
the 6 direction. At Rayleigh numbers over lo4, non-uniform grids were used. Finer grids 
distributed near the cylinder surfaces can handle fine structures of flow motion and heat transfer 
phenomena, namely, the formation of the boundary layers and that of the plumes. To compute 
higher Ra cases, solutions for lower Ra are used as the initial guesses of the iterative solution 
procedure, as before. No under-relaxation was necessary for all cases studied. 

Solutions were compared with the numerical results by Kuehn and Goldstein (Pr  = 0.70)22 
whenever possible and showed excellent agreement. 

Figure 11 shows the profiles of v along the horizontal plane (6 = 90") for various Ra. The 
solutions for 0 = 270" were exactly symmetric with the presented results about u = 0. For a small 
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Figure 1 1 .  Profiles of u at the horizontal plane (Q = 9W) for various Ra for the annulus problem (natural convection) 

OA3 t \\ 
I- 

06 

I n . r O  \ \  

I ------ \ 
V." 

0.2 0.4 0.6 0.8 1 .o 
( r - r , ) / ( r o - r i )  

Figure 12. Profiles of temperature ( T )  along planes of constant values of Q at Ra = 5 x lo4 (natural convection) 
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Rayleigh number (Ra = lo3), the profile is almost axisymmetric about the mid-point of the gap. As 
the Rayleigh number increases, the locations where the maximum and minimum values of v occur 
approach the cylinder walls and the velocity profile forms steeper slopes, indicating the formation 
of the boundary layers. The results at Ra = 5 x lo4 almost overlap with the solution in Reference 
22. 

Radial profiles of the temperature along different 6 lines are shown in Figure 12for Ra = 5 x lo4. 
Sharp temperature gradients are obtained for the inner cylinder at lower values of 6. For the outer 
cylinder heat transfer is high at the top region where the plume arising from the inner cylinder 
impinges on the outer cylinder. The predictions agreed well with the solutions given by Kuehn and 
Goldstein." 

The distribution of the local equivalent conductivity, A, on the cylinder surfaces is shown in 
Figure 13. The equivalent conductivity is defined as the actual heat flux divided by the heat flux 
that would occur by pure conduction in the absence of fluid motion. For the inner cylinder, the 
location where the maximum equivalent conductivity occurs is at the bottom stagnation point and 
that of the minimum value is at the top stagnation point. At Ra = lo3, the curves for both the inner 
and outer cylinders lay about A =  1, which indicates that heat transfer is in the conduction regime. 
However, for over Ra = 5 x lo4, sharp peaks of I appear at the top region of the outer cylinder 
owing to the impinging plume. 

The results in Reference 22 are also plotted in the figure and show good agreement with the 
present prediction. 
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2.0 

1 .o 

o.o( 
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0 0 D Kuehn and Goldstein22 
I 1 12.0 

_d.=*-- ~ 

300 60.0 
' 0.0 

90.0 120.0 150.0 180.0 
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Figure 13. Distributions of the local equivalent conductivity (A) on the inner and outer cylinder surfaces for various Ra 
(natural convection) 
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Present method *'*1 - 0 Kuehn and Goldstein2' 

1 0' 1 o3 104 lo5 
Ro 

Figure 14. Change in the average equivalent conductivity (4 with Ra (natural convection) 
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Figure 15. Angular velocity distributions for the annulus with rotating inner cylinder at Ra= lo3 
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Figure 14 represents the change in the average equivalent conductivity with increasing Rayleigh 
numbers. It is observed from the figure that up to Ra approximately lo3, heat transfer is almost 
solely due to conduction. Over Ra = 6 x lo3. X increases linearly with the logarithm of Ra. The 
prediction by Reference 22 falls on the curve produced by the present study over the entire range of 
Rayleigh numbers investigated. 

Finally, results for mixed convective flows in an annulus are presented where the heated inner 
cylinder is rotating. The net flow rate through the annulus is not known a priori for various 
combinations of the Grashof and rotational Reynolds number. The vorticity-stream function 
formulation is unsuitable for problems of this class.23 The vorticity-velocity formulation along 
with the block tridiagonal matrix algorithm was found to give good results in this case. It can be 
shown that the parameter cr = Gr/Re2 determines the relative strength of effects of the buoyancy 
and the centrifugal forces in the above problem. The pure natural convective flows reported earlier 
correspond to the case cr = co. Figure 15 displays the radial angular velocity profiles for Gr = 1-39 
x lo3 (Ra = lo3) with varying values of cr. The inner cylinder is considered to be rotating 
counterclockwise and the results are shown for 0 = 90" (the ascending side) and 0 = 270" (the 
descending side). For the ascending side buoyancy enhances the rotation induced flow and 
suppresses the flow in the descending side. The average equivalent conductivities were found to 
decrease slightly for decreasing values of cr. This is because the rate of growth of the thermal 
boundary layer on the ascending side of the inner cylinder is less rapid than on the descending side. 
It is conjectured that the interaction seen between the buoyant and centrifugal effects could delay 
the transition to the Taylor-vortex This, however, needs further careful studies. 

CONCLUSION 

The study has successfully demonstrated the applicability of the vorticity-velocity formulation in 
solving a variety of fluid flow and heat transfer problems in different geometries. A coupled solution 
procedure is used for solving simultaneously (instead of the traditional 'one variable at a time' 
approach) along a line using a block tridiagonal matrix algorithm. The formulation also allows 
relatively easy extension to full three dimensions where six dependent variables (for the Navier- 
Stokes equations) are required. With the advent of powerful computers, the problem of storage 
requirement has lessened and the formulation may be attractive owing to its other advantages. 
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APPENDIX 

Nomenclature 

a, b, c, e,f elements of the block tridiagonal matrix system of the finite difference equations 
Y acceleration due to gravity 
Gr Grashof number 
L 
Nu(y)  
NU average Nusselt number 
P r  Prandtl number 

cavity length; gap width of the concentric cylinder 
local Nusselt number at y 
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r radial coordinate 
Re Reynolds number 
t time 
T temperature 
Tc cold wall temperature 
7;t hot wail temperature 
u, velocity components in the x and y directions, respectively, in the Cartesian coordinate 

system; velocity components in the r and 6 directions, respectively, in the polar 
coordinate system 
velocity of the moving lid 
horizontal and vertical coordinates, respectively 

U 
x, Y 

Greek letters 

6 circumferential coordinate 
local equivalent conductivity at 8 
average equivalent conductivity 
kinematic viscosity of fluid 
a dependent variable 
value of 4 at the previous time level 
parameter to indicate the relative strength of effects of the buoyancy and the centrifugal 
forces ( =  Gr/Re2) 
stream function 
vorticity 
rotational speed of the inner cylinder 

Subscripts 

i, j location of the associated elements in the block matrix system 

Superscripts 

k, 1, m, n 
* dimensional value 

indices for dependent variables 
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